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This tool supports the incorporation of uncertainty around the incremental costs and health benefits of healthcare interventions considered for inclusion in health benefits packages (HBP). The tool provides:
1-	uncertainty estimates around the net health effects (NHE)* associated with healthcare interventions included, or in consideration for inclusion, in a health benefits package (HBP);
2-	estimates of the value of undertaking research to reduce uncertainty around the cost-effectiveness of healthcare interventions. 

* NHE are the health benefits net of the health opportunity costs of funding a healthcare intervention using the scarce resources of the healthcare system of the country the HBP is being designed for. 
The decision rule for cost-effectiveness is the following: if NHE > 0 the intervention is expected to be cost-effective whereas if NHE < 0 the intervention is not expected to be cost-effective.  The value of research is also expressed in NHE since research can improve population health by avoiding health losses or health forgone associated with incorrect investment decisions. 

Since the evidence base that informs HBP design is typically constituted by secondary cost-effectiveness data, the tool was specifically developed to quantify uncertainty around inclusion/exclusion decisions that shape HBP design, and the potential value from reducing it via research, using the type of information that is typically reported in the grey and academic literature. 

The results of sensitivity analyses conducted to inform the variation around the expected incremental costs and health benefits of healthcare interventions can, however, be presented in different ways (e.g., tornado plots, cost-benefit scatterplots, incremental cost effectiveness ratio histograms, cost-effectiveness acceptability curves or confidence intervals). The variability in how sensitivity analysis results are reported makes it very challenging to provide a clear picture of the magnitude of uncertainty around interventions’ cost-effectiveness when designing an HBP. The tool aims to address this issue by 
generating distributions of NHE of interventions by applying a set of statistical methods to extract information embedded in each type of sensitivity analysis outputs listed above. Based on the uncertainty estimates around NHE it creates, the tool assesses the value of reducing uncertainty around the decision to include/exclude an intervention in the package and indicates where research could have the greatest impact on population health, with view to help support research prioritization decisions.
Disclaimer: 
This application is based on peer-reviewed statistical methods. It comes with no warranty and should be utilised at the user's own risk. 
If you use the tool in your work, please cite our paper. Available open access here
If you get stuck or something does not work with the tool please contact the lead developer at: laetitia.schmitt@york.ac.uk.

Abbreviations:
CEAC: Cost-effectiveness acceptability curve. Showing the probability that an intervention is cost-effective at different willingness to pay values for a composite summary metric of health such as DALY or QALY (defined below)
DALY: Disability-adjusted life years
HBP: Health benefits package
IHB: Incremental health benefit 
IC: Incremental costs
k: health opportunity cost, in terms of health gains displaced elsewhere within the healthcare system, resulting from using limited healthcare funds
ICER: incremental cost effectiveness ratio = IC/IHB
QALY: Quality-adjusted life years
NHE: Net health effect. NHE=IHB-IC/k
SA: Probability sensitivity analysis conducted by fitting statistical distributions to input parameters and treating the latter as random variables that vary simultaneously
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Figure 1: Interacting with the VPI-HBP tool
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The tool is an executable file that runs on the Windows operating system. The tool executable file will prompt you to download Matlab Runtime on your computer. This freely available application is required to run the tool. Please simply follow the steps indicated by the setting up assistant. (If you have a Macintosh computer, you can use Boot Camp to install Windows in order to use this package.)
 
The tool allows you to upload data using a pre-specified template (‘Input data file’) provided in the tool’s package and creates another Excel file as output (see Figure 1). The tool’s graphical user interface will guide you in uploading the ‘Input data file’ Excel file that you previously saved in the folder of your choice and to specify where you want the output file to be saved. 

The latest version of the tool and supporting files can be downloaded here: XXX
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Step 1: Download the VOI-HBP package here and unzip all files. The package is constituted of:
1- the tool executable file VOI-HBP.exe; 
2- the input data file template to use to upload your data to the tool 
3- an example input data file; 
4- this user-guide.

Step 2: Run the executable file to install the tool on your PC. 

Step 3: Open the input data file template and collate in it all the information relevant to the healthcare interventions being considered for inclusion in the HBP you are evaluating. This should include both interventions that do and do not appear cost-effective based on current evidence. Save the file in the location of your choice.

Step 4: Click on the tool’s icon on your desktop created by installing the tool on your PC (or click on the tool in your program files if you didn’t opt for the icon creation option). The tool will prompt you to upload the input data file from the location where you saved it. 

Step 5: Sit back and follow the computation progress updates provided by the tool. The overall computation should take a couple of minutes but may take longer if the number of interventions is very large.  Please do not close the waiting bar object during the computation process. It will close itself once the analysis is completed.

Step 6: When prompted, indicate the location where you want the tool to save the output file and choose a name for the file.

Step 7: Sit back and follow the graphics creation updates provided by the tool. This should take a couple of minutes. Please do not close the waiting bar object during the graphic creation process. It will close itself once the graphics are all created.

Step 8: It’s ready! The output results excel file will open.
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The input data file aims to collect, in a single spreadsheet, all the information retrieved from the cost-effectiveness literature pertaining to mean incremental cost and incremental health benefits of healthcare interventions of interest for the package and the expected variation around these outcomes.  

As indicated in section 1, information on the variation around the expected incremental costs and incremental health benefits of interventions can be reported via different types of plots or data tables. The tool was designed to handle sensitivity analysis results reported in the following seven ways: 1-tornado plots, 2-raw PSA simulations (as the latter can sometimes be obtained from study authors), 3-scatterplots, 4-ICER histograms, 5-CEACs, 6- 95% confidence intervals and 7-standard errors. Information reported via any of these seven types of medium needs to be collated in the dedicated sheet of the input data file worksheet in order to be processed by the tool.  

In order for the tool to undertake any assessment of the consequences of healthcare resource allocation decisions, four analytical decision parameters also need to be informed in the input data file namely: the analysis time-horizon, the discount rates assigned to cost and health benefits occurring in the future and an estimate of the health opportunity cost of using the healthcare resources of the country the HBP is designed for.
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The input data file is constituted by eleven worksheets organised in five sections that are summarised in the table 1 and explained in detail in sections 3.2 to 3.5. 


	Section
	Worksheet 
Name
	Type of information 

	1.User-guide summary
	Read_me!
	A concise summary of this user-guide to help fill-in the input data file.

	2.Control
	Controls
	Decision analytic parameters relevant and common to all interventions: time-horizon, discount rates for costs and benefits, estimate of health opportunity cost and graphical preferences for the output file

	3.Summary
	Summary
	Summary information on mean estimates of incremental costs (IC) and incremental benefits (IHB), target population and coverage for each intervention. This information is required for all interventions.
You will need to assign a unique numeric intervention identifier (Int_ID) to each intervention. 

	4. Sensitivity Analysis 

	Univariate
Analysis 
	Incremental costs and health benefits when one input parameter is varied at a time

	
	Raw 
Simulations
	Raw Monte Carlo simulations (these may be available from study authors)

	
	Scatterplot
	Descriptive information on incremental costs and health benefits as depicted by scatterplots, namely min and max values for IHB and IC and the strength and direction of the relationship between these two outcomes

	
	DistrICER
	Descriptive information on the distribution of the ICER as depicted by histograms alongside, if possible, min and max values for IHB. 

	
	CEAC
	Probabilities that the intervention is cost-effective at different willingness-to-pay values for a health gain (typically measured in DALY or QALY)

	
	IHBIC_CI
	Confidence intervals around IHB and IC and, where available, a correlation coefficient between them. If left blank, the tool will assign a default value to corr(IHB, IC).

	
	IHBIC_SE
	Standard errors around mean IHB and IC and, where available, a correlation coefficient between them. If left blank, the tool will assign a default value to corr(IHB, IC).

	5.Checks
	Ready
	A number of checks to help ensure the data is ready for upload, in order to be processed by the tool. Checks include a verification that (i) there is no duplication of unique Int_ID between the seven sensitivity analysis worksheets; (ii) there is corresponding summary information for each of the interventions documented in the sensitivity analysis worksheets; (iii) columns fields that required to be filled-in are informed; (iv) the numbers of columns in each worksheet is correct; (v) parameter type is correctly informed in ‘UnivariateAnalyses’ sheet




Table 1: Structure of the input data file to upload data to the tool. 



Please note!
Any interventions for which sensitivity analysis results were collated in the appropriate sensitivity analysis sheets require the corresponding summary data to be completed by the user on the Summary sheet. For instance, if CEAC data is provided for a given intervention (denoted by its Int-ID) in the CEAC sheet, mean estimates of incremental costs and benefits alongside target population and expected level of coverage for this intervention need to be informed in the Summary Sheet. 

The tool can, however, support uncertainty analysis even if no sensitivity results were reported (see section 6.) and can therefore handle the case when there are more interventions documented in the Summary sheet than across the seven sensitivity analysis sheets. 


Please do NOT!
1- rename the sheets of the input data file.
2- delete any column or change their order within each sheet.
3- add any empty columns or rows to space information between (or within) interventions.
Doing so will cause an error in the program.




[bookmark: Control][bookmark: _Toc92187644]3.2. Control section 

The control section corresponds to the control spreadsheet and consists of two sub-sections:

A- Parameters that underpin the analysis and are relevant for all interventions: 

1. 	An estimate of the health opportunity cost
An estimate of the health opportunity costs of using the limited healthcare resources in the country the HBP is being designed for. This opportunity cost estimate is typically expressed as a cost per DALY averted or QALY gained and aims to reflect the amount of health that the country’s healthcare system can produce for an additional amount of resources. This parameter is key to the analysis as it enables the conversion of the financial cost of providing interventions into health forgone elsewhere within the health care system. 

Where available, data to inform this parameter should come from a within-country study; however, few have been conducted to date.  Two potential alternative sources are: Woods et al. (2016) and Ochalek, Lomas and Claxton (2018).  Woods et al. (2016) extrapolated the UK estimate produced by Claxton et al. (2015) to other countries using literature on income elasticity of demand.  Ochalek et al (2018) expanded upon the model of the effect of changes in health expenditure on health outcomes estimated by Bokhari et al. (2007) and following Claxton et al. (2015), applied country-specific data on health expenditure, epidemiology and demography to calculate a range of cost per DALY averted estimates in LMICs.  The central estimate for each country from Ochalek, Lomas and Claxton (2018) is available here. You may wish to combine data from these two sources as was done for the design of the health benefits package for Malawi (Ochalek et al., 2018).

2.	Time horizon (T)
Time period over which you expect the interventions to be in use (i.e. the time until the intervention is expected to be supplanted by alternative technologies).  This is assumed to be the same for all interventions.

3. 	Discount rate for costs and for benefits
The discount rate applied to costs and health benefits.  If a pharmacoeconomic reference case is available for the country, you may use the recommended discount rate or alternatively follow global guidance and best practice (Neumann et al., 2016; Wilkinson et al., 2016; Initiative for Vaccine Research of the Department of Immunization Vaccines and Biologicals, 2019; Robinson et al., 2019; Haacker, Hallett and Atun, 2020). WHO (2003) recommends: (i) 3% and 0% discounting rate for cost and health outcomes respectively as base case scenario, (ii) 3% discounting for both health and cost outcomes in a sensitivity analysis.

B- Output file graphical preferences:

1.	The set of interventions to plot in the graphs produced, namely: either all interventions documented in the Summary spreadsheet or only those interventions for which sensitivity analysis results are available
2.	 Whether interventions names should be added to the graphs. If you choose to have interventions names added to the graphics’ legends, it is advisable to make them as succinct as possible. 
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Eight parameters are required to be provided for each intervention in a single row in the Summary sheet as indicated in Table 2.

	Int_ID
	Intervention name
	IHB study paper
	IC study paper
	scaling factor per person
	Cost conversion factor
	Target population (annual estimates)
	Cove-rage

	1
	Antenatal care 
	2.410
	113.6
	0.0407
	0.3115
	918,437
	0.46

	2
	Antibiotics
	0.790
	100.4
	0.5810
	0.3115
	64,291
	0.30

	3
	ART for men
	3.030
	930.6
	1.0000
	1.0150
	28,963
	0.75



Table 2: Example of input data for the ‘Summary’ spreadsheet.


1.	Intervention’s unique ID number (Int-ID)
A unique number assigned to each intervention ranging from 1 to the total number of interventions considered.

2.	Intervention name
The name of the intervention. This can take the form of any free text description, but short descriptions are recommended for display on graphics.

3.	Incremental health benefits (IHB) study paper
Point estimate for incremental health benefits as reported in the study where the comparator is “do nothing”.  If the comparator is another intervention, you must calculate IHB compared to “do nothing”.  Heath benefits should be reported in terms of a generic measure of health gain i.e., QALY gain or DALY avoided, to which the opportunity cost estimates (k) informed in the Control spreadsheet can correspond. Estimates of IHB should be computed over individuals’ remaining lifetime, as is typically done in cost-effectiveness studies.

4.	Incremental costs (IC) study paper
Point estimate for incremental costs as reported in the study where comparator is “do nothing”.  As for IHB, if the comparator is another intervention, you must calculate IC compared to “do nothing”. IC should reflect the additional costs of the intervention itself as well any additional healthcare costs or savings. Estimates of IC should be computed over individuals’ remaining lifetime, as is typically done in cost-effectiveness studies.

5.	Scaling factor per person
A scaling factor to convert study outcomes (lifetime estimates of IHB and IC) into outcomes per person for interventions that report results for a given population size.  If results are already reported per person, the scaling factor is 1.

6.	Cost conversion factor 
A factor that converts study costs into a common currency of analysis and inflates them to the base year chosen for the analysis. To derive the cost conversion factor, you may follow this 3-step process: 
Step1- Define the currency conversion factor to convert costs as reported in the study (e.g. in local currency or international dollars) into the common currency chosen for the analysis (e.g., current US$) in the year the study reports costs in. You may consult conversion rates over time reported by The World Bank.
Step2- Determine the inflation rate for the common currency for the analysis to convert the costs from the year they are reported in by the study to the base year chosen for analysis. 
Step3- Multiply the currency conversion factor by the inflation rate and obtain the cost conversion factor. 

7.	Target population (annual estimates)
The target population for a given intervention consists of the population which could benefit from it if implemented. It is specific to each intervention. For simplicity, the tool requires only a single data entry of annual estimates.

To derive annual estimates of target population, we suggest choosing among approaches A1 to A3 described below, based on the type of data available to you. These approaches aim to capture all the individuals that, over the analysis time horizon T, will benefit from a given intervention whilst ensuring beneficiaries are not double counted as this would misleading inflate IHB and IC estimates over T years. Whilst they represent simplifications of population dynamics and assume that all current estimates will remain constant over time, they help keep data input requirements to a minimum. 

A1- If annual incident cases are available, incident cases should be entered. They will de facto be assumed to be constant throughout the time horizon T
Example: cases of maternal interventions or interventions targeted at new-born and some other interventions such as cancer treatment

A2- If the target population for the intervention considered is defined by an age-group, to which a proportion in need based on disease prevalence may often be applied, annual estimates of target population can be obtained by following these two steps:
Step1: add to the size of the current age-group, for every year of the remaining time horizon (i.e., for T-1 years), a cohort of individuals currently aged one-year younger than the starting age of the age-group;
Step2: Divide the resulting number by T, the length of the time horizon .
Step3: Multiply the obtained annual estimate of individuals within the age-group by the estimated proportion in need.
Example: In Malawi, the target population for male circumcision was defined as all males aged 15 to 49 years old and the analysis time-horizon was set to 20 years. To obtain an annual estimate of the target population for this intervention, the size of the cohort of individuals currently aged 14 years old was added to the size of the current 15-49 age-group every year for 19 years. The annual estimate of target population for male circumcision was then derived by dividing the total number of persons entering the 15-49 age-group by 20 (the length of the time horizon) and applying the estimated proportion in need of 100%.

A3- If the target population is defined by disease prevalence, as opposed to age-groups to which a proportion in need is applied as described in A2, annual incidence estimates need to be determined by searching for appropriate information in the literature.
Examples: women or men or children needing ART treatment, women in need of ‘Prevention of Mother to Children Transmission’
If annual incidence estimates cannot be found, the following approach may be used:
Step1: Compute the proportion (p) of the target population for the intervention of interest over the country’s total population (e.g. what percentage of the country’s total population do ‘women in need of ART treatment’ currently account for?)
Step2: Apply a growth rate to the total population of the country the HBP is being designed for over the time horizon (e.g. 2% growth over 20 years – to be informed by historic data) in order to forecast the country’s total population size by at year: base year + T 
Step3: Multiply the resulting total population size at year: base year + T by the proportion p computed in Step1
Step4: Divide the resulting result by T,the length of the time horizon
It is worth noting that this approach is expected to lead to an underestimation of annual estimates as population growth rates accounts for deaths, whilst we are trying to capture all those individuals who at some point will benefit from the intervention considered. Mortality among those benefiting from the intervention is instead expected to be captured in the lifetime estimates of IC and IHB extracted from cost-effectiveness studies. 

8.	Coverage rate
The expected percent of the targeted population who would realistically be covered by the intervention, when taking into account known constraints such as supply chain bottlenecks, lack of access to facilities, lack of skilled staff, etc as well as constrains on the demand side such as lack of perceived benefits. For instance, for Malawi, although the population in need for circumcision was evaluated to be 100% of the males aged 15-49 years old, coverage was estimated around 10% to account for constraints on the demand side.


[bookmark: _Toc92187646]3.4. Sensitivity analysis results section

[bookmark: _Toc92187647]3.4.1. General information

The input data file contains seven worksheets: “UnivariateAnalyses”, “Rawsimulations”, “Scatterplot”, “DistrICER”, “CEAC”, “IHBIC_CI”, “IHBIC_SE”, in which the sensitivity analysis results reported in the literature are to be collated. 


Please note!
1- The tool expects results from one type of sensitivity analysis output for each unique Int-ID. If a study undertook several types of sensitivity analyses, results from the analysis that is the most inclusive of uncertainty should be chosen. Uploading results from several types of sensitivity analyses for a single intervention can be done, but requires (i) using a different Int_ID for each of the sensitivity analyses reported and (ii) matching the created Int_IDs with the appropriate summary information in the Summary worksheet (by duplicating the row of summary information for as many times as the additional number of sensitivity analyses uploaded for that particular intervention).
2- Sensitivity analysis output should be collated in the appropriate sheets as they were reported in the study paper. The scaling factor per person and cost conversion factor provided in the ‘Summary’ sheet (see section 3.3.) will automatically be applied by the tool to the sensitivity analysis output provided.
3- Depending on the sensitivity analysis sheet, intervention-specific sensitivity analysis output needs to be collated by adding either new rows or new columns to the sheet, as summarised in Table 3.
4- Every new row or column added to a sensitivity analysis sheet needs to be assigned the Int_ID of the intervention that the information entered pertains to.
5- Sensitivity analysis sheets can be left empty but should not be deleted from the input data file



Table 3 summarises how the information should be added in each sensitivity analysis sheets, that is:
- If the information is to be entered by adding new rows to the sheet (with typically one row per intervention with the exception of the ‘UnivariateAnalysis’ sheet), the number of columns as provided in the input data file template shall be unchanged.
- If the information is to be entered by adding new columns, then the total number of columns in sheet will equal the total number of columns provided in the input data file template multiplied by the total number of interventions documented in that sheet. 



	SHEET NAME
	Enter data by creating new:
	ROWS/intervention
	COLUMNS/intervention

	
	
	Number corresponds/ or equals to
	Different row totals per intervention
possible?
	Number corresponds to/ equals to
	Do all columns require filling in?

	Univariate
Analysis
	rows
	The input parameters considered in analysis
	yes
	16
	yes

	Raw
simulations
	columns
	number of Monte Carlo simulations 
	yes
	2* number of interventions 
	yes

	Scatterplot
	rows
	1 row per intervention
	no
	6
	yes

	DistrICER
	columns
	bins in ICER histogram
	yes
	5* number of interventions
	corr_IHBIC and min-max values for IHB may be left blank*

	CEAC
	columns
	increments in willingness to pay values for which cost-effectiveness probabilities were evaluated
	yes
	5* number of interventions
	corr_IHBIC and min-max values for IHB may be left blank*

	IHBIC_CI
	rows
	1 row per intervention
	no
	6
	corr_IHBIC may be left blank*

	IHBIC_SE
	rows
	1 row per intervention
	no
	4
	corr_IHBIC may be left blank*



* Provided ‘Univariate Analysis’. ‘Raw Simulations’, ‘Scatterplot’ spreadsheets are not all empty

Table 3: Adding information to the sensitivity analysis sheets of input data file.
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Context:
Typically, univariate sensitivity analyses consist of varying a set of input parameters P to a high (Ph) and low (Pl) value against the base case (Pbc) value and evaluating the impact on incremental health benefits (IHB) and incremental costs (IC). Situations in which only variations in the ICER are reported, as opposed to variations in IHB and IC, are covered within the sub-section “Dealing with ICERs”. 

Information to enter: 
For each input parameter P, the tool requires:
- the values taken by IHB and IC at input parameter values Pl, Ph and Pbc, namely:
 IHB(Pl), IC(Pl), IHB(Ph), IC(Ph), IHB(Pbc) and IC(Pbc);
- the nature of the input parameter. For each row/i..e each input parameter evaluated, you may choose one option by coding yes/no as 1/0 among between six possible parameter types: 
1-rate; 2-proportion or probability, 3-cost, 4- Year of life lost (YLL); 5- disability/utility weight; 6-hazard ratio/risk ratio/odd ratio (HR/RR/OR) (see Table 4). 

How:
By creating one row per input parameter evaluated, with each row being assigned the Int_ID of the intervention it pertains to. There may thus be many rows per intervention and different numbers of rows across interventions, reflecting the different number of input parameters evaluated across univariate sensitivity analyses (see Table 4). 

Can some cells be left blank?
No.

Example of input data:
In the illustrative example provided in Table 4, univariate sensitivity analysis for intervention 8 evaluated the sensitivity of IHB and IC to the change in two input parameters, one being a rate and the second being a proportion. In this particular case, the rate parameter impacted only IHB (since IC(Pbc)= IC(Pl)=IC(Ph) in the row pertaining to the rate parameter) whereas the proportion impacted only the IC (since IHB(Pbc)= IHB(Pl)=IHB(Ph) in the row pertaining to the proportion parameter). Some input parameters may however, impact on both IHB and IC (see first row of intervention 18). 
In the univariate sensitivity analysis undertaken for intervention 18, a single alternative value to the base case value of input parameters was used. Consequently, Pl was set equal to Ph, IHB(Pl) was set equal to IHB(Ph) and IC(Ph) was set equal to IC(Pl). 
Finally, it is worth noting that estimates for IHB and IC for intervention 8 are an order of magnitude different from estimates for IHB and IC for intervention 18. The reason is that (as noted in section 3.3.) sensitivity analysis output should be provided as reported in the study paper i.e.  based on the study’s population and currency. 

	Int_ID
	Pbc
	Pl
	Ph
	IHB
(Pbc)
	IHB
(Pl)
	IHB
(Ph)
	IC
(Pbc)
	IC
(Pl)
	IC
(Ph)
	rate
	prop
	cost
	YLL
	w*
	HR/
RR/
OR

	8
	0.495
	0.192
	0.805
	79,081
	27,116
	160,528
	401,320
	401,320
	401,320
	1
	0
	0
	0
	0
	0

	8
	0.35
	0.18
	0.53
	79,081
	79,081
	79,081
	401,320
	237,243
	569,383
	0
	1
	0
	0
	0
	0

	18
	0.85
	0.75
	0.75
	44.8
	35.2
	35.2
	366.3
	383.6
	383.6
	1
	0
	0
	0
	0
	0

	18
	0.004
	0.005
	0.005
	44.8
	29.2
	29.2
	366.3
	398.9
	398.9
	1
	0
	0
	0
	0
	0

	18
	7.18
	14.36
	14.36
	44.8
	44.8
	44.8
	366.3
	517.8
	517.8
	0
	0
	1
	0
	0
	0



*prop=proportion; YLL=Year of Life Lost; w= disability/utility weight; HR/RR/OR = Hazard ratio/Risk ratio/Odd ratio
Table 4: Example of input data for the “UnivariateAnalysis” spreadsheet.



Please note!
1- For sensitivity analyses that evaluated a single alternative value against the base case value of input parameters, Pl should be set equal to Ph; IHB(Pl) to IHB(Ph) and IC(Pl) to IC(Ph).
2- For each intervention, the number of rows completed will correspond to the number of parameters considered in univariate sensitivity analysis and each row should be assigned the intervention unique Int_ID.	



Dealing with ICERs 

The tool requires changes in IHB or IC to calculate NHE.  However, where only changes in ICERs are reported (such as within a tornado diagram, e.g., Figure 2) these results may still be used by applying certain assumptions such as for instance: 
(A1) cost input parameters only impact IC and 
(A2) efficacy and disease-related mortality input parameters only impact IHB. 

Assumption (A1) is likely to be reasonable for most interventions, but assumption (A2) may be less so.  For example, improvements in survival may increase long-term costs, or, on the other hand, improved efficacy could reduce treatment duration and therefore costs.  The reasonableness of the assumptions is therefore a judgement call for the user and may require flagging when interpreting the results from analyses that report changes in ICERs only. 

Figure 2 provides an illustrative example how changes in the ICER might be reported using a tornado diagram.  The sensitivity of the ICER to the input parameters with the largest influence (namely: efficacy, dose cost, mortality from disease and outpatient cost) can be translated to a change in IHB and IC using the above assumptions.  To do so, information from the tornado plot is combined with mean estimates of IHB, IC and ICER evaluated at the base case values of all input parameters in order to derive IHB(Pl), IHB(Ph), IC(Pl), IC(Ph).  The equations required are given in Table 5 and applied in Table 6 to generate usable input for the tool, that is input to be entered on the “UnivariateAnalyses” spreadsheet. 
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	Mean IC
	Mean IHB 
	Mean ICER 

	Base case analysis
	4,000
	0.7285
	5,490



Figure 2: Example of univariate sensitivity analysis where only a tornado plot of ICER alongside mean IHB and IC from base case analysis are reported. 




	Parameter
	Impact
on IHB 

	Impact on IC 

	IHB(Pl)
	IHB(Ph)
	IC(Pbc)
	IC(Pl)

	Efficacy
	100%
	0% 
	IC(Pbc) /ICER(Pl)
	 IC(Pbc)/ ICER(Ph)
	IC(Pl)=IC(Ph)=IC(Pbc)

	Dose cost
	0%
	100%
	IHB(Pl)=IHB(Ph)=IHB(Pbc)
	IHB(Pbc)*
ICER(Pl)
	IHB(Pbc)*
ICER(Ph)

	Mortality from disease
	100%
	0%
	IC(Pbc) /ICER(Pl)
	IC(Pbc)/ ICER(Ph)
	IC(Pl)=IC(Ph)=IC(Pbc)

	Outpatient cost
	0%
	100%
	IHB(Pl)=IHB(Ph)=IHB(Pbc)
	IHB(Pbc)*
ICER(Pl)
	IHB(Pbc)*
ICER(Ph)



Table 5: Example of assumptions taken to translate ICER data into change in IHB and IC.  


For the efficacy input parameter, we can read from the tornado plot that: 
ICER(Pl) = ICER (efficacy =19%) = 8,500 
ICER(Ph) = ICER (efficacy =80%) = 4,250
Assuming IC(Pl)=IC(Ph)=IC(Pbc) = 4,000 as per assumption A2, we obtain:
IHB(Pl) = 4,000/ 8,500 = 0.47 (DALY averted) and IHB(Ph)= 4,000/ 4,250 = 0.94 (DALY averted)

For the program cost input parameter, we can read from the tornado plot that: 
ICER(Pl) = ICER (dose cost =0.2) = 4,100
ICER(Ph) = ICER (dose cost =0.5) = 7,800
Assuming IHB(Pl)=IHB(Ph)=IHB(Pbc) = 0.7285 as per assumption A1, we obtain:
IC(Pl) = 0.7285 * 4,100 = 2,987 and IC (Ph)= 0.7285 * 7,800 = 5,682 

	Int_ID*
	Pbc
	Pl
	Ph
	IHB(Pbc)
	IHB(Pl)
	IHB(Ph)
	IC(Pbc)
	IC(Pl)
	IC(Ph)

	12
	0.495
	0.19
	0.80
	0.7285
	0.47
	0.94
	4,000
	4,000
	4,000

	12
	0.35
	0.2
	0.5
	0.7285
	0.7285
	0.7285
	4,000
	2,987
	5,682

	…
	…
	…
	…
	…
	…
	…
	…
	…
	…



* The same Int_ID should be assigned to input parameters evaluated within the intervention-specific same sensitivity analysis 

Table 6. Illustrative example translating a tornado plot of ICER into usable information for the tool 
[bookmark: PSA][bookmark: _Toc92187649]3.4.3. Completing the “RawSimulations” spreadsheet

Context:
This spreadsheet is for entering the simulated IHB and IC values resulting from probability sensitivity analysis, which may be available upon-request by study authors.

Information to enter: 
Monte Carlo simulations of IHB and IC (in this order) 

How:
By creating two columns per intervention, each being referenced with the same Int_ID (see Table 7). 

Can some cells be left blank?
The number of rows of data will correspond to the number of simulations within each study and may therefore differ between interventions. This will automatically be handled by the tool.

Example of input data for two interventions (Int_ID 41 and Int_ID 67):
	IHB
	IC
	IHB
	IC

	41
	41
	67
	67

	0.03058
	2.29167
	0.04209
	2.41522

	0.02388
	2.48859
	0.03932
	2.28212

	…
	…
	…
	…

	0.02068
	2.11823
	0.03303
	2.60225

	0.04058
	2.46211
	
	

	0.01983
	1.91053
	
	



Table 7- Example of input data for the “RawSimulations” spreadsheet 




[bookmark: Scatterplot][bookmark: _Toc92187650]3.4.4. Completing the “Scatterplot” spreadsheet

Context:
Studies may report results of probability sensitivity analysis as a distribution of IHB and IC simulations on a cost-effectiveness plane.

[image: ]
Figure 3: Example of PSA output reported as scatterplot with IC on y-axis and IHB on x-axis

Information to enter: 
- The minimum and maximum values for IHB and IC;
- The correlation coefficient between IHB and IC 

How:
By creating one row per intervention (see Table 7).

Can some cells be left blank?
No

Obtaining min-max values and the correlation coefficient from scatterplot:
The min and max values can be easily read off the plot, whereby in the example provided in Figure 3, IHB values are comprised within -0.25 to 1 and IC values within 200 and -400. The correlation coefficient is slightly more difficult to obtain. A first step is to look is the shape of the plot created by the scatterplot points and observe whether the plot shape is almost round or if a linear shape emerges. The more the observations are grouped together in a linear shape, the greater the correlation. 

The pictures in Figure 4 can help give you a sense of the strength of relationship between two variables. Once the strength of correlation has been determined, the direction of relationship can be found by simply looking at whether IC and IHB values plotted on respectively the y and x axes increase/decrease together (positive correlation) or not (negative correlation).  

[image: ]
Figure 4. Strength and direction of correlation for two correlated standard normal variables. 

In the example scatterplot of Figure 3, a factor of -0.7 was chosen to represent the strength and direction of correlation and the full information required by the tool is provided in the first row of Table 8.

Example of input data:
	Int_ID
	IHBmin
	ICmax
	ICmin
	ICmax
	corr_IHBIC

	33*
	-0.25
	1
	-400
	200
	-0.7

	24
	0.1
	2.3
	-360
	530
	0.3



* All information was extracted from figure 3

Table 8: Example of input data for the ‘IHBICscatterplot’ spreadsheet


[bookmark: ICER][bookmark: _Toc92187651]3.4.5. Completing the “DistrICER” spreadsheet


Context:
Publications may report results from probability sensitivity analysis as histograms of ICERs, which depict the frequency or probability with which the ICER takes values within intervals of equal size. These intervals are known as “bins”. The histogram in Figure 5 uses a bin width of 30 and thus shows the probability that the ICER lies between 0 and 30, 30 and 60, etc.

[image: ]
Figure 5: Example of PSA output reported as a histogram of ICER. 

Information to enter: 
- The proportion or density (i.e., the frequency) of simulations within each bin and the corresponding ICER value at bin midpoint.
- minimum and maximum plausible values for IHB (i.e., minIHB and maxIHB)
- correlation coefficient between IHB and IC (i.e., corr_IHBIC)

How:
Every new intervention can be documented by creating five columns referenced with the appropriate Int_ID, irrespective of whether some columns are left blank or not (see Table 9).

Can some cells be left blank?
If min-max values for IHB cannot be derived based on information in the study paper, or analyst or expert judgement, the corresponding cells may be left empty. In this case, the tool assumes that min and max for IHB amount to 0 and twice the mean value for IHB respectively. Similarly, the correlation coefficient between IHB and IC may be left blank. In this case, the tool applies the average of the correlation coefficients that could be extracted from univariate analyses, raw simulations and scatterplots that have been collated. If there are no such interventions for which a correlation coefficient could be extracted (i.e. if all three spreadsheets ‘UnivariateAnalysis’, ‘RawSimulations’, ‘IHBICscatterplot’ are empty), then a correlation coefficient must be specified. Importantly, even if the cells for ‘minIHB’ and/or ‘maxIHB’ and/or ‘Corr(IHB,IC)’ are left blank, their corresponding columns should nevertheless be created (see Table 9).  





Example of input data:

	Freq*
	ICER
	minIHB
	maxIHB
	corr_
IHB,IC
	Freq*
	ICER
	minIHB
	maxIHB
	Corr_
IHB,IC

	25
	25
	25
	25
	25
	37
	37
	37
	37
	37

	0.005
	-90
	
	
	
	1000
	-300
	-25
	75
	0.3

	0.007
	-30
	
	
	
	500
	-250
	
	
	

	0.015
	0
	
	
	
	3000
	-180
	
	
	

	0.02
	30
	
	
	
	4000
	400
	
	
	

	0.02
	60
	
	
	
	1000
	450
	
	
	

	0.037
	90
	
	
	
	900
	830
	
	
	

	0.065
	120
	
	
	
	800
	750
	
	
	

	0.073
	150
	
	
	
	
	
	
	
	

	0.08
	180
	
	
	
	
	
	
	
	

	0.105
	210
	
	
	
	
	
	
	
	

	0.11
	240
	
	
	
	
	
	
	
	

	0.115
	270
	
	
	
	
	
	
	
	

	0.115
	300
	
	
	
	
	
	
	
	

	0.087
	330
	
	
	
	
	
	
	
	

	0.065
	360
	
	
	
	
	
	
	
	

	0.045
	390
	
	
	
	
	
	
	
	

	0.038
	420
	
	
	
	
	
	
	
	

	0.005
	450
	
	
	
	
	
	
	
	



* the tool can handle either probabilities or densities as a measure of frequency.

Table 9: Example of input data for the ‘DistrICER’ spreadsheet.


[bookmark: CEAC][bookmark: _Toc92187652]3.4.6. Completing the “CEAC” spreadsheet

Context:
Publications may report results from probabilistic sensitivity analysis as cost-effectiveness acceptability curves (CEACs) which depict the probability that the intervention is cost-effective for a given willingness to pay value for a health gain (typically QALY or DALY).





[image: Chart, line chart
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Figure 6: Example of PSA output reported as a cost-effectiveness acceptability curve (CEAC)


Information to enter: 
-  The probability that the intervention is cost-effective ( ‘pr(CE)’) at a given willingness-to-pay (WTP) value for a health gain;
- minimum and maximum plausible values for IHB (i.e., ‘minIHB’ and ‘maxIHB’); 
- correlation coefficient between IHB and IC variables (i.e., ‘corr_IHBIC’).

How:
Every new intervention can be documented by creating five columns referenced with the appropriate Int_ID, irrespective of whether some columns are left blank or not (see Table 10).

Can some cells be left blank?
As with the distribution of ICER values reported in histograms (see section 3.4.5.), in the absence of any information, min-max estimates for IHB may be left blank (the tool will assume that min and max for IHB amount to 0 and twice the mean value for IHB respectively). Similarly, the correlation coefficient between IHB and IC may be left blank, unless there are no such interventions for which a correlation coefficient could be extracted (i.e. if all three spreadsheets ‘UnivariateAnalysis’, ‘RawSimulations’, ‘IHBICscatterplot’ are empty).






Example of input data:
	pr(CE)*
	WTP
	corr_
IHBIC
	minIHB
	maxIHB
	pr(CE)*
	WTP
	corr_
IHBIC
	minIHB
	maxIHB

	26
	26
	26
	26
	26
	34
	34
	34
	34
	34

	0
	50
	
	
	
	0
	2000
	-45
	130
	0.25

	0.1
	75
	
	
	
	0.4
	3000
	
	
	

	0.2
	100
	
	
	
	0.45
	4000
	
	
	

	0.3
	120
	
	
	
	0.52
	5000
	
	
	

	0.4
	140
	
	
	
	0.6
	6000
	
	
	

	0.5
	170
	
	
	
	0.63
	7000
	
	
	

	0.6
	200
	
	
	
	0.68
	7200
	
	
	

	0.7
	250
	
	
	
	0.7
	7200
	
	
	

	0.8
	300
	
	
	
	
	
	
	
	

	0.9
	440
	
	
	
	
	
	
	
	

	1
	750
	
	
	
	
	
	
	
	



* The tool can handle interventions for which even at a very high willingness-to-pay value for a health gain, the probability of being cost-effective never reaches one. 

Table 10: Example of input data for the ‘CEAC’ spreadsheet.



[bookmark: CI][bookmark: _Toc92187653]3.4.7. Completing the “IHBIC_CI” spreadsheet

Context: 
Studies reporting 95% confidence intervals (or credible intervals) for IHB and IC generated from probabalistic sensitivity analysis.

Information to enter: 
- The lower and upper bounds of 95% confidence intervals for IHB and IC (i.e., ‘lowerb_IHB’, ‘upperb_IHB’, ‘lowerb_IC’ and ‘upperb_IC’).
- the correlation coefficient between IHB and IC (i.e., ‘corr_IHBIC’).

How:
By creating one row per intervention (see Table 11).

Can some cells be left blank?
The correlation coefficient between IHB and IC may be left blank. In this case, the tool applies the average of the correlation coefficients that could be extracted from univariate analysis output, raw simulations and scatterplot (user-provided). If there are no such interventions for which a correlation coefficient could be extracted (i.e. if all three spreadsheets ‘UnivariateAnalysis’, ‘RawSimulations’, ‘IHBICscatterplot’ are empty), then a correlation coefficient will have to be specified.

Example of input data:

	Int_ID
	lowerb_IHB
	upperb_IHB
	lowerb_IC
	upperb_IC
	corr(IHB,IC)

	30
	0.033
	0.785
	10.69
	65.82
	 0.4

	31
	0.033
	0.785
	10.69
	65.82
	 



Table 11: Example of input data for the ‘IHBIC_CI’ spreadsheet.



[bookmark: SE][bookmark: _Toc92187654]3.4.8. Completing the “IHBIC_SE” spreadsheet

Context: 
Studies reporting standard errors around mean IHB and IC generated from probabilistic sensitivity analysis.

Information to enter: 
- The standard error for IHB and IC respectively (i.e., ‘SE_IHB’ and ‘SE_IC’) (see Table 9). 
- The correlation coefficient between IHB and IC (i.e., corr_IHBIC’). 

How:
By creating one row per intervention (see Table 12).

Can some cells be left blank?
The correlation coefficient between IHB and IC variables may be left blank. In this case, the tool applies the average of the correlation coefficients that could be extracted from univariate analysis output, raw simulations and scatterplot (user-provided). If there are no such interventions for which a correlation coefficient could be extracted (i.e. if all three spreadsheets ‘UnivariateAnalysis’, ‘RawSimulations’, ‘IHBICscatterplot’ are empty), then a correlation coefficient will have to be specified.

Example of input data

	Int_ID
	SE_IHB
	SE_IC
	corr(IHB,IC)

	8
	0.002
	3.27
	

	14
	0.00461
	5.15485
	 0.6



Table 12: Example of input data for the ‘IHBIC_SE’ spreadsheet.


What if standard errors are provided around benefits and costs of each comparative intervention?
In some studies, standards errors (or confidence intervals) may be provided around the benefits and costs of each of the interventions compared, instead of around incremental outcomes (see Table 13).
	
	X=“continue treatment A”
	Y=“stop treatment A”

	Cost, mean (SE)
	926.5 (15.1)
	947.3 (17.0)

	QALY, mean (SE)
	1.87 (0.00)
	1.87 (0.01)



Table 13. Example of costs and health benefits outcomes provided for each comparator.

Estimates of variance around IHB ad IC can nevertheless be derived by making explicit assumptions about the levels of correlation in outcomes between the interventions compared (i.e., corr(cost_X, costY) and corr(benefit_X, benefit Y)), and using the known relationship: Var(X-Y) =Var(X)+Var(Y) - 2corr(X,Y)SE_X SE_Y.

Typically, the correlation in outcomes between comparators, namely corr(cost_X, costY), and corr(benefit_X, benefit Y), will be expected to be high (anything from 0.5 upward) if there are many commonalities across comparators that drive absolute costs and benefits (e.g., costs of managing the disease, baseline risks of events/mortality etc). 
In the example reported in Table 13, assuming a correlation coefficient of 0.8 for costs between “continue treatment A” versus “stop treatment A”, the standard error around mean IC of 20.8 of is equal to:  sqrt(15.12 + 172 – 2*0.8 *15.1*17) = 10.31.


[bookmark: _Toc92187655]3.4.9. Dealing with interventions with no sensitivity analysis output available

As indicated in section 3.1, every intervention listed in any of the seven sensitivity analysis sheets should have matching summary information in the ‘Summary’ sheet. The tool can, however, accommodate for interventions that only have summary information on mean estimates of incremental costs and benefits. For these interventions with no sensitivity analysis results, the tool uses variance estimates based on outputs available for the other interventions to produce an indicative uncertainty range around IC and IHB (see section 6.2. for further details). 


[bookmark: Ready][bookmark: _Toc92187656]3.5. ‘Ready for upload’ section

Basic checks of your data before upload to ensure that:

1- There is no Int_ID duplicate between the seven sensitivity analysis sheets i.e., to each Int_ID corresponds a single type of sensitivity analysis output. For instance, if Int_ID 20 is found in both “UnivariateAnalysis” and “IHBICscatterplot” sheets then the tool will not work properly. 
2- There is matching summary information for each of Int_ID entered in the seven sensitivity analysis sheets. 
3- Int_ID value range corresponds to 1 to the total number of interventions documented in the Summary sheet
4- The mandatory columns fields have been completed  
5- The number of columns per sheet matches the constraints indicated in Table 3.
6- The nature of input parameters in univariate sensitivity analyses (i.e. rate, proportion, cost, YLL or HR/RR/OR) has been informed, and that a single option was chosen for each input parameter i.e., each row).

Please note!
1- A YES should appear on the ‘Ready for upload’ sheet before uploading the data to the tool.
2- A Yes does not rule out other potential issues that could lead to inconsistencies in results, such as data copied-pasted in the wrong order, etc.
3- The checks undertaken on the ‘Ready for upload’ sheet rely on functions (e.g. the unique function) which may not work in some older versions of Excel. In that case, checks listed in Table 14 should be done manually. 





[bookmark: _Toc92187657]3.6. Checklist to consult before uploading the input data file to the tool

	Section
	Please check that:  

	Overall
	- No worksheet has been renamed or deleted
- No column - as provided in the input file template - has been deleted, nor their order changed, within each sheet
- No blank column or row as been added for spacing purposes

	1.User-guide 
	- The information provided on the “Read Me!” sheet has been read 

	2.Controls
	- A value has been provided for all decision analytic parameters and graphical preferences have been informed.

	3.Summary
	- All columns have been informed and every intervention has been provided with a unique numeric Int_ID ranging from 1 to the total number of interventions documented in the file.

	4. Sensitivity Analysis 

	-  Every new row or column (as relevant to that particular sheet) that has been added and assigned an Int_ID.
-  There is a single sensitivity analysis output per unique Int_ID. 
-  Sensitivity analysis output has been collated in the appropriate sheets as reported in the study paper (i.e., without applying any per person scaling or conversion factor).

	5. Checks 
	- A YES appears on the ‘Ready’ sheet before uploading the data to the tool (this does not rule out other potential issues that could lead to inconsistencies in final results, such as data copied-pasted in the wrong order etc). 



Table 14. Checklist before data upload


[bookmark: _Toc92187658]4. Output results file

The tool creates and saves in your chosen location an Excel file that contains all the computational and graphical outputs, hereafter referred to as the ‘Output file’. The tool’s graphical user interface will prompt you to choose a file name of your choice.


The output file consists of nine sheets: 

1- ‘Decision param.’ sheet
A summary of the parameters underpinning the analysis (since any results generated by the tool will be conditional on them) namely the health opportunity cost of using healthcare resources, the analytical time horizon and the discount rate for costs and benefits.
2- ‘Summary results’ sheet
For all the interventions listed on the ‘Summary’ sheet of the input data file (see section 3.3.), the following pieces of information are provided:
       - intervention name and associated unique Int_ID
       - the size of the covered target population
- the mean and 95% confidence interval for the annual per-person expected IHB 
- the mean and 95% confidence interval for the annual per-person expected IC (in currency and base year chosen for the analysis)
- the mean and 95% confidence interval for the present value of expected population-level NHE over the time horizon T that the intervention is to be provided
- a binary (yes/no) indicator as to whether the intervention is expected to be cost-effective or not 
- whether the uncertainty range was produced from study-specific sensitivity analysis output (data-based) or using variance data from other interventions as proxy (scenario-based)
- the maximum value of research, that is the expected maximum NHE that research could generate by reducing uncertainty around the decision to include or exclude the intervention in the package

3- ‘popIHB’ sheet
A bar chart of interventions ranked by decreasing net present value of IHB expected to be provided to the covered target population over the chosen time horizon. The error bars depict 95% confidence intervals.
Scope: Depending on the graphical preferences informed in the Controls sheet (see section 3.2.), either all interventions listed in the Summary spreadsheet or only interventions for which sensitivity analysis data was available.

4- ‘popNHE’ sheet
A bar chart of interventions ranked by decreasing net present value of NHE expected to be provided to the covered target population over the chosen time horizon. The error bars depict 95% confidence intervals.
Scope: Depending on the graphical preferences informed in the Controls sheet (see section 3.2.), either all interventions listed in the Summary spreadsheet or only interventions for which sensitivity analysis data was available.

5- ‘ResearchValue’ sheet
A bar chart of the expected maximum population NHE from reducing uncertainty around the inclusion/exclusion decision for each intervention. This bar chart’s ranking provides the expected maximum value of research for interventions ranked by decreasing net present value of population NHE. The rationale for applying this ranking is to help identify for which of the ‘best buys’ interventions, research could valuably reduce decision uncertainty and for interventions, further research could valuably challenge current exclusion decisions. 
Scope: Depending on the graphical preferences informed in the Controls sheet (see section 3.2.), either all interventions listed in the Summary spreadsheet or only interventions for which sensitivity analysis data was available.

6- ‘Delay implementation’ sheet
A table of the maximum delay during which the implementation of interventions that are currently expected to be cost-effective based on currently available - potentially poor - evidence, may be postponed in order to gather additional information to reduce decision uncertainty. The underpinning idea is that, despite an initial expectation that a given intervention is cost-effective, delaying it to gather further information may help avoid potentially incurring a population net health loss. 

This maximum delay is computed under a 50% and 100% probability that research is conducted during the delay period and assumes that research would remove all decision uncertainty. As such the delay durations provided in this sheet provides necessary conditions for assessing whether research shall be given priority over implementation. If decision-makers expect that the findings from an additional study may report after the end of the period during which research can provide a greater benefit than implementation, then delaying the intervention to wait for additional evidence, is unlikely to be worthwhile. 

7- ‘StdErrors’ sheet
Standard errors, as a proportion of mean outcomes for respectively IHB and IC, that was computed after simulating IHB and IC values using the information provided in the seven sensitivity analysis sheets (see section 6.2. on methods and assumptions underpinning those simulations). The average of these standard errors is used to produce indicative uncertainty range around NHE for those interventions without any sensitivity analysis data (see section 6.2.) 

8- ‘Corr(IHB,IC)’ sheet
Correlation coefficients between IHB and IC that could be extracted for the subset of interventions for which univariate sensitivity analysis output, raw simulations or scatterplot data was available. The mean of those correlation coefficients is used by the tool to inform the correlation between IHB and IC for the other interventions when this information was not user-defined. 
9-  ‘Validity check’ sheet. 
This sheet provides the percentage difference between (i) per-person mean IHB and IC estimates from the tool’s generated distributions of IHB and IC with (ii) per-person mean IHB and IC computed by linking study paper IHB and IC estimates and per-person scaling and cost conversion factors entered on the ‘Summary’ Sheet


The aims of the results reported is this sheet are twofold:
1- to help identify straight-away whether any data has been incorrectly entered (e.g, if by mistake the sensitivity analysis results and mean IHB ad IC estimates entered for a given Int_ID do not correspond to the same intervention).
2- To assess, for each intervention, the level of approximation around costs and benefits outcomes generated by the computations of the tool described in Section 6. 

Importantly, a difference between (i) mean IHB and IC outcomes obtained from the tool’s generated distributions of IHB and IC and (ii) mean outcomes derived from the information entered on the ‘Summary’ Sheet does not necessarily indicate an estimation error if the study paper IHB and IC comes from deterministic analysis. For instance, Gaziano et al (2014)’s study of the cost-effectiveness of an intervention of hypertension education in South Africa reported an ICER of 320$/DALY averted under deterministic analysis and 223$/DALY averted under probabilistic analysis. Since the probabilistic ICER was 30% lower than the deterministic one, we would expect mean IHB and mean IC generated by the tool (on the basis of the probabilistic simulations output reported in study paper via an ICER histogram) to be noticeably different from the mean IHB and IC obtained from deterministic analysis. In this particular example, assuming IC and IHB equally contribute to the 30% reduction between the deterministic and probabilistic ICERs, we would expect mean IC and mean IHB generated from the tool to be respectively about 15% lower and 20% higher than mean outcomes from deterministic analysis (whereby 0.85/1.20= 0.7). You will therefore have to use your own judgement as to whether the difference found (if substantial) can be justified or not by other data reported in the paper (e.g., if mean ICER under both deterministic and probabilistic analyses are reported to be substantially different).

[bookmark: _Toc92187659]5. Troubleshooting 

1- The tool creates and saves in the location of your choice the Excel file of output results as well as three graphics that are included in the Excel file. These three figure files are: 
‘EVPIdbar.tif’, ‘IBpopbar.tif’ and ‘NHEpopbar.tif’.
If you rerun the analysis and save results in the same folder the tool will overwrite these three graphics. In some instances, however, such as overwriting these graphs many times, this can cause errors. It is therefore suggested to either rename or delete these three figures before your rerun the analysis or, to save results for a subsequent analysis in a different folder.

2- Upon analysis and graphics completion, the tool leaves the output result excel file open so that you do not need to go and look for it at your chosen location if you want to see results straightaway. This implies that if you want to overwrite the output excel file (i.e. save another output result file using the same name) you will first have to close the previous output excel file that was generated by the tool. 


[bookmark: _Toc92187660]6. Technical notes


[bookmark: _Toc92187661]6.1. Graphical summary of approaches and assumptions 

In order to assess the magnitude of decision uncertainty, and the value of reducing it via research, the tool generates a probability distribution of the NHE expected to be generated by each intervention. Since NHE is a function of IHB and IC (see definition of NHE in section 1), the tool first generates a probability distribution of IC and IHB associated with each intervention. Figure 7 depicts the two main approaches and set of underpinning assumptions used by the tool to extract the information necessary to generate probability distributions of IC and IHB from the seven different types of sensitivity analysis outputs described in section 3.
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[image: ]
Figure 7. Description of VOI-HBP tool’s two main approaches to extracting information from sensitivity analysis data 


[bookmark: _Toc92187662]6.2. Detail of methods and assumptions used to extract information from sensitivity analysis outputs

	Sensitivity Analysis output
	Method for deriving probability distributions for
IHB and IC
	Main steps for method implementation. 
The tool:
	Assumptions

	Univariate analysis
	Proxy a PSA by evaluating IHB and IC when all input parameters are varied simultaneously.

 
	Step 1: Computes sensitivity coefficients that quantify the relative change in IHB and IC for a relative change in each of the input parameters evaluated in sensitivity analysis.

Step 2: Fits a statistical distribution to each input parameter based on their nature (e.g., rate, probability, cost, HR) and derives standard errors assuming the low and high parameter values used in sensitivity analysis represent the bounds of 95% confidence intervals of a normally distributed variable. 

Step 3: For each set of random draws taken from the parameter-specific probability distributions fitted in Step 2, 
(i) for each input parameter, computes the relative changes in parameter base case values and multiplies it with the corresponding parameter-specific sensitivity coefficients of IHB and IC computed in Step 1 
(ii) sum the resulting parameter-specific relative changes in IHB and IC base case values assuming additivity of input parameters’ impacts on IHB and IC to derive the overall relative change in respectively IHB and IC across all parameters changes.

(iii) Multiply the base case value for respectively IHB and BC by (1+ overall relative change in IHB (IC) base case value) 

Step 4: Repeats steps 3 to 4 10,000 times and obtain a distribution of IHB and IC values for 10,000 sets of samples from each input parameter distributions

	1-IHB and IC are assumed to be linear functions of the set of input parameters considered in univariate analyses, with sensitivity coefficients as slope coefficients.

2-Input parameters are assumed to independently and additively impact on IHB and IC. 

3-Sensitivity analyses’ range of variation applied to the input parameters evaluated correspond to their 95% confidence intervals 



	Raw Simulations
	No computations needed.

	Scatterplots
	Simulate IHB and IC as correlated normally (or lognormally) distributed variables.
	- Step 1: Computes the standard errors for IHB and IC based on min and max values read from the scatterplot.
- Step 2: Samples from the bivariate normal distribution using the correlation estimate read off the scatterplot representation 
- Step 3: Deletes any simulated (IHB, IC) points outside of the [min, max] ranges for both IHB and IC. 

	1- IHB and IC are bivariate normally distributed
2- The strength of relationship between IHB and IC can be well approximated from the scatterplot representation.
3- The min and max values observed for incremental costs and benefits represent the 99.99% confidence intervals (i.e., zscore =3.29053)

	ICER histograms
	
	Step 1: Computes the mean and variance of intervention ICER from the ICER distribution depicted by the histogram.
Step 2: Adjust paper-reported mean IC and IHB to ensure their ratio corresponds to the mean ICER of the histogram representation of probability sensitivity analysis output (derived in Step1)
- Step 3: Derives se_IC using the expression for the approximation of the variance of a ratio (see equation 1) populated with: var(ICER) obtained in Step1; mean estimates for IHB and IC obtained in Step2, se_IB (see assumption 3) and correlation between IB and IC (see assumption 2)
VAR(ICER) = mu_ICER2 *(cvIC2+cvIB2-2corr*cvIC*cvIB)  (1)
with cv=SE/mu (Briggs et al 1999) 
- Step 4:  Samples from the bivariate normal distribution.

	1- IHB and IC are bivariate normally distributed
2- The user supplied correlation between IHB and IC is reasonable, or if left unspecified, corr(IHB,IC) is equal to the mean correlation found in the interventions for which information about the correlation structure between IHB and IC could be extracted. Results’ sensitivity to this assumption can be tested by entering in the relevant spreadsheets of the input data file alternative correlation values to the value extracted by the tool that is reported in the sheet ‘Corr(IHB,IC)’ of the output file (see section 4).
3- The user supplied minimum and maximum plausible values for IHB are reasonable, or if left unspecified, equal to 0 to two-times the mean. Results’ sensitivity to this assumption can be tested by entering alternative [min,max] values for IHB in the ‘DistrICER’ and ‘CEAC’ spreadsheets of the input data file (e.g. min-max = +/- 50% mean value)
4- In the absence of further information, IC and IHB are assumed to equally contribute to the difference in mean ICER between the deterministic analysis and probabilistic analysis.



	CEAC
	
	Method: The tool translates CEAC information (that is the cumulative probabilities of the intervention being cost-effective (Pr(CE)) for increasing willingness-to-pay (WTP) values for a DALY averted or QALY gain) into a probability distribution of ICER and applies the steps developed for dealing with probability distribution of ICER depicted by histograms. The tool takes into account that CEAC may not cross the x-axis nor have an asymptote to one. 
- Step 1: Computes the difference in Pr(CE) associated with each increments in WTP values and links it to the corresponding WTP values at mid-point between each increments.
- Step 2: Special case: If sum frequencies across the derived ICER distribution is lower than 1, that is if pr(CE) does not have an asymptote to 1, adds another bin for the complement frequency (e.g. 0.3 if the cost-effectiveness probability of intervention never gets higher than 0.7). 
The ICER value associated to this complement frequency is determined such that the mean ICER derived from the complete ICER distribution corresponds to the ratio of mean IC and mean IHB provided by end-user in the Summary sheet. 
- Step 3:  Once CEAC information is translated into a probability distribution for the ICER, applies steps 1 to 4 set out for extracting information from ICER histograms.

	

	Confidence intervals around IHB and IHC (IHBIC_CI)
	
	- Step 1: Checks whether confidence intervals provided for IHB and IC are centered, by comparing interval midpoint with mean estimates. If IHB and/or IC have uncentered intervals, they are assumed to follow a lognormal distribution.
- Step 2: Computes the standard errors for IHB and IC based on the bounds of the 95% confidence intervals for IHB and IC provided. If IHB and/or IC have uncentered intervals, the tool computes the standard errors for the log of IHB and/or IC.
- Step 3: Samples from the bivariate normal/lognormal distribution using estimates of uncertainty from Step2 and specified correlation estimate (see assumption 2).
- Step 4: Exponentiates values if they were sampled from the simulated log of IHB or IC. 
	1-IHB and IC are either bivariate normally or lognormally distributed
2- The user supplied correlation between IHB and IC is reasonable, or if left unspecified, corr(IHB,IC) is equal to the mean correlation found in the interventions for which information about the correlation structure between IHB and IC could be extracted. Results’ sensitivity to this assumption can be tested by entering in the relevant spreadsheets of the input data file alternative correlation values to the value extracted by the tool that is reported in the sheet ‘Corr(IHB,IC)’ of the output file (see section 4)


	Standard errors for IHB and IHC (IHBIC_SE)
	
	-Step 1: Samples from the bivariate normal distribution using the specified correlation estimate (see assumption 2).



	

	ABSENCE of Sensitivity analysis data
	Assumes the average variance estimates derived for the n interventions for which sensitivity analyses output was available.
For instance: if across the n interventions with sensitivity analysis data, standard error for IHB and IC amounted, on average, to respectively 44% and 29% of the point estimates for IHB and IC, then the 95% confidence interval for IHB of an intervention that is estimated to avert 2 DALYs would be:  [2-1.96*0.44*2; 2+1.96*0.44*2] = [0.27; 3.7] DALY averted and then the 95% confidence interval for IC of an intervention that is estimated to lead to an additional cost of 100$ would be:  [100-1.96*0.29*100; 100+1.96*0.29*100] = [43$; 155$] 



Table 15. Summary of methods and assumptions used to extract information from sensitivity analysis outputs




[bookmark: _Toc92187663]6.3. Generating probability distributions of Net Health Effects 

For each intervention, the tool:

Step 1: Produces simulations of per-person IHB and IC in the currency and base-year chosen for the analysis by applying the per-person scaling and cost conversion factors (see section 3.2.) to the probability distributions of IHB and IC generated by applying a set of methods and assumptions to study results.
IHBpppa  = scaling factor per person * IHB    
ICpppa     = scaling factor per person * cost conversion factor * IC 
Where pppa denotes ‘per person per annum’ i.e., per year of the intervention being provided to the covered target population.

Step 2: Computes the net present value of Net Health Effect (NHE) outcomes at population level, taking into account:
1- Annual estimates of target population at the expected level of coverage ‘cTpop’ (assuming cTpop is constant over the time horizon T that the intervention is to be provided);
2- the time horizon during which the intervention is expected to be provided ‘T’;
3- discount rates for costs and benefits ‘dr_c’ and ‘dr_h’;
4- the health opportunity cost ‘k’ of using scarce healthcare resources
IHBpop     = IHBpppa * cTpop * (1-(1/(1+dr_h)^T)) /(1-1/(1+dr_h));
NHEpop   = IHBpop - (ICpppa/k)*cTpop* (1-(1/(1+dr_c)^T)) /(1-1/(1+dr_c)); 

Step 3: Creates 95% credible intervals for IHBpppa, ICpppa and IHBpop and NHEpop using the highest density interval (HDI) method, which indicates which points of a distribution are most credible and cover most of the distribution (Kruschke 2015).


[bookmark: _Toc92187664]6.4. Computing the value of research 

For each intervention, the tool:
Computes the maximum NHE from research using the expected value of perfect information (EVPI) method implemented as follows:
a- For each of the n=1:10000 possible NHEpop values, 
maxNHE_Perfectinfo = max(NHEpop, 0) 
b- EVPI = mean(maxNHE_Perfectinfo) - max(0,mean(NHEpop))
EVPI values are represented in the graphics of the maximum NHE from research provided in the Output file. 


[bookmark: _Toc92187665]7. References


Bokhari, F. A. S., Gai, Y. and Gottret, P. (2007). ‘Government health expenditures and health outcomes’. Health Econ. 16, 257–73.

Briggs, A.H., Mooney, C.Z., Wonderling, D.E. (1999). ‘Constructing confidence intervals for cost-effectiveness ratios: an evaluation of parametric and non-parametric techniques using Monte Carlo simulation’. Stat Med, 18(23). 

Claxton, K. et al. (2015). ‘Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold’. Health Technol. Assess. 19, 1–503 

Gaziano, T.A., Bertram, M., Tollman, S.M., Hofman, K.J. (2014). ‘Hypertension education and adherence in South Africa: a cost-effectiveness analysis of community health workers’. BMC Public Health. 14(240). 

Kruschke, J. K. (2015). Doing Bayesian data analysis. 2nd Ed. Elsevier

Ochalek, J. et al. (2018) ‘Supporting the development of a health benefits package in Malawi’, BMJ Global Health. BMJ Publishing Group, 3(2)

Ochalek, J., Lomas, J. and Claxton, K. (2018) ‘Estimating health opportunity costs in low-income and middle-income countries: a novel approach and evidence from cross-country data’, BMJ Global Health. BMJ Specialist Journals, 3(6)

Woods, B. et al. (2016) ‘Country-Level Cost-Effectiveness Thresholds: Initial Estimates and the Need for Further Research’, Value in Health, 19(8).

World Health Organisation. (2003). WHO guide to cost-effectiveness analysis. Available at: https://www.who.int/choice/publications/p_2003_generalised_cea.pdf?ua=1. Accessed 20.03.2021

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.tiff

image1.png

